Find the maximum half-width of 3D figure

2018-02-23 16:27:17

S := 299792458;

Rem := 1;

Imm := 0;

f =.

d =.

wt =.

i =.

dmin = 0.1;

dmax = 10;

fmin = 8;

fmax = 18;

wtmin = 1;

wtmax = 10;

Reemin = 3.01;

Imemin = 0.04;

c1 = 7.1966584528920068;

c2 = -2.8612955354362528*10^(-2);

c3 = 4.9904748273007211;

c4 = 1.1557482550800184;

c5 = 1.4462311508982122*10^4;

Of = 2.9899879533823599;

a0 = -4.0196213710349726*10^-1;

a1 = 9.9011244036818056;

a2 = 2.0237033052953829*10^-1;

a3 = 4.6135432671114094;

a4 = 3.3240796293189689*10^-1;

a5 = -2.6267966826701428*10^-1;

Ree[f_, wt_] =

c5/((1.0 + Exp[c1 - c2*f])*(1.0 + Exp[c3 - c4*wt])) + Of;

Ime[f_, wt_] = a0 + (a1/(1.0 + Exp[a2*(f + a3 + a4*wt + a5*f*wt)]));

El[f_, wt_] := Ree[f, wt] - I*Ime[f, wt];

Ma := Rem - I*Imm;

Z[wt_, f_, d_] :=

Sqrt[Ma/El[f, wt]]*

Tanh[I*2*Pi*f*10^9*d*(10^-3) *Sqrt[Ma*El[f, wt]]/S];

R[wt_, f_, d_] := (Z[wt, f, d] - 1)/(Z[wt, f, d] + 1);

RL[wt_, f_, d_] := 20*Log10[Abs[R[wt, f, d]]];

RL10surface =

Block[{$PerformanceGoal = "Quality"},

ContourPlot